197 research outputs found

    The Degraded Gaussian Diamond-Wiretap Channel

    Full text link
    In this paper, we present nontrivial upper and lower bounds on the secrecy capacity of the degraded Gaussian diamond-wiretap channel and identify several ranges of channel parameters where these bounds coincide with useful intuitions. Furthermore, we investigate the effect of the presence of an eavesdropper on the capacity. We consider the following two scenarios regarding the availability of randomness: 1) a common randomness is available at the source and the two relays and 2) a randomness is available only at the source and there is no available randomness at the relays. We obtain the upper bound by taking into account the correlation between the two relay signals and the availability of randomness at each encoder. For the lower bound, we propose two types of coding schemes: 1) a decode-and-forward scheme where the relays cooperatively transmit the message and the fictitious message and 2) a partial DF scheme incorporated with multicoding in which each relay sends an independent partial message and the whole or partial fictitious message using dependent codewords.Comment: 26 pages, 6 figures, a short version will appear in Proc. IEEE ISIT 201

    Noisy Network Coding with Partial DF

    Full text link
    In this paper, we propose a noisy network coding integrated with partial decode-and-forward relaying for single-source multicast discrete memoryless networks (DMN's). Our coding scheme generalizes the partial-decode-compress-and-forward scheme (Theorem 7) by Cover and El Gamal. This is the first time the theorem is generalized for DMN's such that each relay performs both partial decode-and-forward and compress-and-forward simultaneously. Our coding scheme simultaneously generalizes both noisy network coding by Lim, Kim, El Gamal, and Chung and distributed decode-and-forward by Lim, Kim, and Kim. It is not trivial to combine the two schemes because of inherent incompatibility in their encoding and decoding strategies. We solve this problem by sending the same long message over multiple blocks at the source and at the same time by letting the source find the auxiliary covering indices that carry information about the message simultaneously over all blocks.Comment: 5 pages, 1 figure, to appear in Proc. IEEE ISIT 201

    A Unified Approach for Network Information Theory

    Full text link
    In this paper, we take a unified approach for network information theory and prove a coding theorem, which can recover most of the achievability results in network information theory that are based on random coding. The final single-letter expression has a very simple form, which was made possible by many novel elements such as a unified framework that represents various network problems in a simple and unified way, a unified coding strategy that consists of a few basic ingredients but can emulate many known coding techniques if needed, and new proof techniques beyond the use of standard covering and packing lemmas. For example, in our framework, sources, channels, states and side information are treated in a unified way and various constraints such as cost and distortion constraints are unified as a single joint-typicality constraint. Our theorem can be useful in proving many new achievability results easily and in some cases gives simpler rate expressions than those obtained using conventional approaches. Furthermore, our unified coding can strictly outperform existing schemes. For example, we obtain a generalized decode-compress-amplify-and-forward bound as a simple corollary of our main theorem and show it strictly outperforms previously known coding schemes. Using our unified framework, we formally define and characterize three types of network duality based on channel input-output reversal and network flow reversal combined with packing-covering duality.Comment: 52 pages, 7 figures, submitted to IEEE Transactions on Information theory, a shorter version will appear in Proc. IEEE ISIT 201

    Exact Moderate Deviation Asymptotics in Streaming Data Transmission

    Full text link
    In this paper, a streaming transmission setup is considered where an encoder observes a new message in the beginning of each block and a decoder sequentially decodes each message after a delay of TT blocks. In this streaming setup, the fundamental interplay between the coding rate, the error probability, and the blocklength in the moderate deviations regime is studied. For output symmetric channels, the moderate deviations constant is shown to improve over the block coding or non-streaming setup by exactly a factor of TT for a certain range of moderate deviations scalings. For the converse proof, a more powerful decoder to which some extra information is fedforward is assumed. The error probability is bounded first for an auxiliary channel and this result is translated back to the original channel by using a newly developed change-of-measure lemma, where the speed of decay of the remainder term in the exponent is carefully characterized. For the achievability proof, a known coding technique that involves a joint encoding and decoding of fresh and past messages is applied with some manipulations in the error analysis.Comment: 23 pages, 1 figure, 1 table, Submitted to IEEE Transactions on Information Theor

    A New Achievable Scheme for Interference Relay Channels

    Full text link
    We establish an achievable rate region for discrete memoryless interference relay channels that consist of two source-destination pairs and one or more relays. We develop an achievable scheme combining Han-Kobayashi and noisy network coding schemes. We apply our achievability to two cases. First, we characterize the capacity region of a class of discrete memoryless interference relay channels. This class naturally generalizes the injective deterministic discrete memoryless interference channel by El Gamal and Costa and the deterministic discrete memoryless relay channel with orthogonal receiver components by Kim. Moreover, for the Gaussian interference relay channel with orthogonal receiver components, we show that our scheme achieves a better sum rate than that of noisy network coding.Comment: 18 pages, 4 figure
    corecore